
Three-Dimensional Analytic Geometry and Vectors
Section 11.1 Three-Dimensional Coordinate Systems

Distance formula in three dimensions
The distance |P1P2| between the points P1(x1,y1,z1) and P2(x2,y2,z2) is

P1P2 x2 x1( )2 y2 y1( )2 z2 z1( )2P1P2 x2 x1 y2 y1 z2 z1

Equation of a shpere
An equation of a sphere with center C(h,k,l) and radius r is

r2 x h( )2 y k( )2 z l( )2r2 x h y k z l

In particular, if the center is the origion O, then an equation of the sphere is

r2 x2 y2 z2r2 x y z

Section 11.2 Vectors
Given the points A(x1,y1,z1) and B(x2,y2,z2), the vector a with representation AB is
a = <x2-x1, y2-y1, z2-z1>

The length of the three-dimensional vector a = <a1,a2,a3> is a a12 a22 a32a a1 a2 a3

Vector Addition
if a = <a1,a2> and b = <b1,b2>, then the vector a+b is defined by a+b =<a1+b1, a2+b2>
similarly, for three-dimensional vectors, <a1,a2,a3>+<b1,b2,b3> = <a1+b1, a2+b2, a3+b3>

Multiplication of a vector by a scalar
If c is a scalar and a = <a1,a2>, then the vector ca is defined by ca = <ca1, ca2>
similarly, for three-dimensional vectors, c<a1,a2,a3> = <ca1,ca2,ca3>

Section 11.3 The Dot Product

Definition 
If a = <a1,a2,a3> and b = <b1,b2,b3>, then the dot product of a and b in the number a*b given by

a b. a1 b1. a2 b2. a3 b3.a b. a1 b1 a2 b2 a3 b3

Theorem 
If θ is the angle between the vectors a and b, then a b. a b. cos θ( ).a b. a b θ

If θ is the angle between the nonzero vectors a and b, then cos θ( )
a b.

a b.
a b

a b

a and b are orthogonal if and only if a b. 0a b.

Scalar projection of b onto a: b
a b.

a

a b

a

Vector projection of b onto a: b
a b.

a

a

a
.a b

a

a

a
which is a b.

a( )2
a.
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Section 11.4 The Cross Product

Definition 
If a = <a1,a2,a3> and b = <b1,b2,b3>, then the cross product of a and b is the vector
a x b = <a2b3-a3b2, a3b1-a1b3, a1b2-a2b1>

Theprem 
The vector a x b is orthogonal to both a and b

Theorem 
If θ is the angle between a and b (so 0<=θ<=π), then |axb| = |a||b|sinθ

Corollary 
Two nonzero vectors a and b are parallel if and only if a x b = 0

Section 11.5 Equations of Lines and Planes

r ro t v.ro t v is the vector equation of a line L
x x0 a t.x0 a t
y y0 b t.y0 b t are the parametric equations of the line L
z z0 c t.z0 c t
x xo

a
=

x xo

a

y yo

b
=

y yo

b

z zo

c
=

z zo

c
t is the symmetric equation of the line L

n r ro( ). 0n r ro( ). is the vector equation of a plane P
To obtain a scalar equation for the plane, we write n = <a,b,c>, r = <x,y,z>, and ro=<xo,yo,zo>,
then we obtain the following: <a,b,c>*<x-xo, y-yo, z-zo> = 0

a x xo( ). b y yo( ) c z zo( ). 0a x xo( ). b y yo( ) c z zo( ). scalar equation of the plane through Po(xo,yo,zo) with
normal vector n = <a,b,c> we can write the equation of a 
plane as ax+by+cz = d.

Distance D from a point P(xo,yo,zo) to the plane ax+by+cz+d = 0

D
a x1. b y1. c z1. d

a2 b2 c2

a x1 b y1 c z1 d

a b c

Section 11.6 Quadric Surfaces

Ellipsoids x2

a2

y2

b2

z2

c2
1

x2

a2

y2

b2

z2

c2
Hyperboloids x2

a2

y2

b2

z2

c2
1

x2

a2

y2

b2

z2

c2
Cones z2

c2

x2

a2

y2

b2

z2

c2

x

a

y

b

Paraboloids z

c

x2

a2

y2

b2

z

c

x

a

y

b
Quadric Cylinders 1

x2

a2

y2

b2
1

x

a

y

b
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Section 11.7 Vector Function and Space Curves
We now study functions whose alues are vectors because such functions are needed to describe
curves in space andd the motion of particles in space.

A vector-values function, or vector function, is simply a function whose domain is a set of real 
numbers and whose range is a set of vectors.

If r(t) = <f(t), g(t), h(t)>, then
at

r t( )lim =r t( )
a

r
at

f t( )lim
at

g t( )lim,
at

h t( )lim, 

provided the limits of the component functions exist.

Derivatives and Integrals
dr

dt
=

dt

dr
r t( )

0h

r t h( ) r t( )

h
lim

Theorem 
If r(t) = <f(t), g(t), h(t)> = f(t)i + g(t)j + h(t)k, where f,g, and h are differentiable functions, then
r'(t) = <f'(t), g'(t), h'(t)> = f'(t)i + g'(t)j + h'(t)k

Theorem 
Suppose u and v are differentiable vector functions, c is a scalar, and f is a real-valued function,
then:

d

dt
u t( ) v t( )( ) =

dt

d d

du
t( )

d

dv
t( )

d

dt
c u t( )( ) =

dt

d
c

d

du
t( )

d

dt
f t( ) u t( )( ) =

dt

d d

df
t( ) u t( ) f t( )

d

du
t( )

d

dt
u t( ) v t( ).( ) =

dt

d d

du
t( ) v t( ). u t( )

d

dv
. t( )

d

dt
u t( ) v t( )( ) =

dt

d d

du
t( ) v t( ) u t( )

d

dv
t( )

d

dt
u f t( )( )( ) =

dt

d d

df
t( )

d

du
f t( )( ) Chain Rule
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Section 11.8 Arc Length and Curviture
Recall that we defined the length of a plane curve x = f(t), y = g(t), a<=t<=b, as the limit of lengths 
of inscribed polygons and, for the case where f' and g' are continuous, we arrived at the formula:

L =
a

b

tfp t( )
2

gp t( )
2

d =gp

a

b

fp p

a

b

t
dx

dt

2 dy

dt

2
d

The length of a space curve is defined in exactly the same way. Suppose that the curve has the 
vector equation r(t)=<f(t), g(t), h(t)>, a<=t<=b, or equivalently, the parametric equations
x=f(t), y=g(t), and z=h(t), where f', g', and h' are continuous. If the curve is traversed exactly once 
as t increases from a to b, then it can be shown that its length is:

L =

a

b

tfp t( )
2

gp t( )
2

hp t( )
2

d =gp

a

b

fp p

a

b

t
dx

dt

2 dy

dt

2 dz

dt

2
d

Notice that both of the arc length formulas (1) and (2) can be put into the more compact form

L =
a

b
trp t( ) d

Definition 
The curviture of a curve is k = dT

ds
where T is the unit tangent vector.

The curviture is easier to compute if it is expressed in terms of the parameter t instead of s, so we 
use the Chain Rule to write

dT

dt
=

dt

dT dT

ds

ds

dt
. and k = dT

ds
=

dT

dt

ds

dt

but ds/dt = |r'(t)|, so k t( )
Tp t( )

rp t( )r

p

Theorem 
The curviture of the curve given by the vector function r is k t( )

rp t( ) rpp t( )

rp t( )
3

r

k x( )
fpp x( )

1 fp x( )
2

2
3

fpp

fp
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Example 1:
Find the length of the arc to the circular helix with vector equation r(t)=cos(t)i+sin(t)j+tk from the 
point (1,0,0) to the point (1,0,2π).

Since r'(t) = -sin(t)i + cos(t)j + k, we have

rp t( ) =r sin t( )( )2 cos2 t( ) =t cos t 2

The arc from (1,0,0) to (1,0,2π) is described by the parameter interval 0<=t<=2π and so we have

L =
0

2 π
trp t( ) d =r

0

2 π
t2 d 1 2 2 π=

Example 2:
Reparametrize the helix r(t)=cos(t)i+sin(t)j+tk with respect to arc length measured from (1,0,0) in 
the direction of increasing t.

The initial point (1,0,0) corresponds to the parameter value t = 0. From Example 1 we have

ds

dt
=

dt

ds
rp t( ) =r 2 and so s s t( )s t( ) s t( )

0

t
urp u( ) dr

0

t
u2 d =

t
2 t.

Threrefore t
s

2

s and the required reparametrization is obtained by substituting for t:

r t s( )( ) =t s( )t cos
s

2
i sin

s

2
j

s

2
k

Example 3:
Show that the curvature of a circle of radius a is 1/a

We can take the circle to have center the origin, and then a parametrization is

r t( ) =t a cos t( ). i a sin t( ) j. therefore rp t( ) =r a sin t( ). i a cos t( ) j. and rp t( ) =r a

so T t( ) =T t( )
rp t( )

rp t( )
=

r
sin t( ) i cos t( ) j and Tp t( ) =Tpp cos t( ) i sin t( ) j

This gives Tp t( ) =Tpp 1 so we have k t( ) =k t( )k t
Tp t( )

rp t( )
=

Tpp 1

a

This shows that small circles have large curvatures and large circles have small curvatures
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Example 4:
Find the curvature of the twisted cubic r(t)=<t,t^2,t^3> at a general point and at (0,0,0)

We first compute the required ingredients:

r'(t)=<1,2t,3t^2. and r''(t)=<0,2,6t> 

rp t( ) 1 4 t2 9 t4rp t( ) t t rp t( ) rpp t( )

i

1

0

j

2 t

2

k

3 t2

6 t

ki j

t 6 t2. i 6 t. j 2 k

rp t( ) rpp t( ) 36 t4. 36 t2. 4rp t( ) rpp t( ) t t 2 9 t4. 9 t2. 1

so k(t) = rp t( ) rpp t( )

rp t( )
3

2 1 9 t2. 9 t4.

1 4 t2. 9 t4.

3
2

rp t( ) rpp t( )

rp t( )
3

t t

t t

at the origin the curve is k(0) = 2

Example 5:
Find the curvature of the parabola y=x^2 at the points (0,0), (1,1), and (2,4)

sine y' = 2x and y'' = 2, we get

k x( ) =x

d2

dy2

1
d2

dy2

3

2
3

=

d

dy

d

dy

2

1 4 x2

2
3

The curvature at (0,0) is k(0) = 2. 
At (1,1) it is k(1) = 2/(5)^3/2 = 0.18.
At (2,4) it is k(2) = 2/(17)^./2 = 0.03.
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Example 6:
Find the unit normal and binormal vectors for the circular helix r(t) = cos(t)i + sin(t)j + tk

d

dr
t( ) =

d

dr
t sin t( ) i cos t( ) j k

d

dr
t( ) =

d

dr
t 2

T t( )

d

dr
t( )

d

dr
t( )

=
1

2
sin t( ) i cos t( ) j k( )

d

dT
t( ) =

d

dT
t

1

2
cos t( ) i sin t( ) j( )

d

dT
t( ) =

d

dT
t

1

2

N t( ) =N t( )

d

dT
t( )

d

dT
t( )

= cos t( ) i sin t( ) j =cos t( )cos t cos t( ) sin t( ), 0,( )

This shows that the normal vector at a point on the helix is horizontal and points toward the 
z-axis. The binormal vector is

B t( ) T t( ) N t( )T t( )T =
1

2

i

sin t( )

cos t( )

j

cos t( )

sin t( )

k

1

0

=

i

t

t

j

t

t

k
1

2
sin t( ) cos t( ), 1,( )

Example 7:
Find the equation of the normal plane and osculating plane of the helix in Example 6 at the point
P(0,1,π/2).

The normal plane at P has normal vector r'(π/2)=<-1,0,1>, so an equation is

1 x 0( ) 0 y 1( ) 1 z
π

2
=x y z 0 or z x

π

2
x

The osculating plane at P contains the vectors T and N, so its normal vector is TxN=B. From 
Example 6 we have

B t( )
1

2
sin t( ) cos t( ), 1,( )cos t( )cos B

π

2
=B

1

2
0,

1

2
,

A simpler normal vector is <1,0,1>, so an equation of the osculating plane is

1 x 0( ) 0 y 1( ) 1 z
π

2
=x y z 0 or z x

π

2
x
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Example 8:
Find and graph the osculating circle of the parabola y=x^2 at the origin.

From Example 5 the curvature of the parabola at the origin is k(0)=2. So the radius of the osculating 
circle at the origin is 1/k = 1/2 and its center is (0,1/2). Its equation is therefore

x2 y
1

2

2
=x y

1

4
We use parametric equations of this circle:

x
1

2
cos t( )t

y
1

2

1

2
sin t( )t

Section 11.9 Motion In Space: Velocity And Acceleration
In this section we show how the ideas of tangent and normal vectors and curvature can be used in 
physics to study the motion of an object, including its velocity and acceleration, along a space curve.
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